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Abstract 
 
Steady incompressible flow past a square cylinder inclined at 45 0 is numerically investigated by using finite-element 
formulation in two-dimensions. The discretized equations are solved by GMRES (Generalized Minimal RESidual 
method). The computations are carried out in the Reynolds number (Re) range of 5- 40 using a blockage of 0.05 and a 
shear parameter of 0.01 and 0.02 . Dirichlet type boundary conditions are employed on the side walls along with the 
shear inlet and stress-free exit. One may expect, due to shear inlet, assymetricity in the cylinder wake. As a result, the 
cylinder wake was observed to be slightly assymetric and the onset of separation is in between Re = (5,10). The drag 
force, as expected, decreases with Re in the steady regime. Interestingly, the cylinder also experiences a small value 
of lift (-0.0451) at Re = 5, result of shear provided at the inlet, which increases monotonically to -0.0274 as Re reaches 
40. The symmetric surface pressure plot (expected to be assymetric) illustrates that the base pressure becomes locally 
maximum from locally minimum with increase in Re. This is in contrast with those obtained for circular cylinder where 
the base pressure is always locally maximum. Different values of shear parameter and its effect on flow behaviour and 
characteristics is a part of further studies. 
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1. Introduction 
 

In spite of extensive experimental and numerical studies on flow past a bluff bodies, shear flow past an 

inclined square cylinder is very useful for many practical applications, e.g. vortex flowmeters, buildings, bridges, 

towers, and wires. At very low Re, the flow is laminar, steady and does not separate from the cylinder. With 

the increasing Re, the flow separates from the trailing edge but remain steady and laminar up to Re of about 

40. Beyond this Re, the flow undergoes a time dependent periodically oscillating wake.We are performing the 

numerical simulation in the range Re 5-40 for shear parameters (k= 0.01 0.02) at a blockage(b) of 0.05. Cheng 

et al. [2007] numerically simulated shear flow around square cylinder, examined vortex shedding frequency and 

aerodynamic forces exerted on the cylinder for Re ranging from 100 to 200 and K ranging from 0.0 to 0.5 using 

lattice Boltzmann method. Their results show that vortex phenomenon is strongly dependent on Re and K. The 

experimental studies are done by Kiya et al. [1980] to investigate the flow phenomenon. They reported that for 

shear flows, the critical Reynolds number (Rec) above which the vortex shedding occurs is higher than the Rec 

for uniform flows. Robert R.Hwang [1997] studied the shear effect on vortex shedding behind a square cylinder, 

he solved 2D N-S equations using a finite difference method. His results show the effect of shear rate on the 

incoming flow on the vortex shedding, lift and drag forces in the range of K = 0.0 to 0.25 and Re from 500 1500. 

. 

2.  The governing equations 

2.1 The incompressible flow equations  
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Let Ω C IR
n
sd be the spatial domain, where nsd = 2 is the number of space dimensions and (0,T) be the temporal domain. The boundary of Ω 

is denoted by Γ and is assumed to be piecewise smooth. The closure of the domain is denoted by Ω. The spatial 

and temporal coordinates are denoted by x and t, respectively. The equations governing the unsteady flow of an 

incompressible fluid are:  

ρ(
∂u

∂t 
+ u · VVu) - VV · ζζ = 0 on Ω × (0,T), (1)  

VV · u = 0 on Ω × (0,T). (2) 

Here u and ζζ denote the fluid velocity and the Cauchy stress tensor, respectively. The stress is the sum of its isotropic 

and deviatoric parts:  

ζζ = -pI + T, T = 2μεε(u), εε(u) = 
1
2

((VVu)+(VVu)T
) (3)  

where p, I, μ and εε are the pressure, identity tensor, dynamic viscosity of the fluid and strain rate tensor,  

respectively. Both, the Dirichlet and Neumann-type boundary conditions are accounted for and are represented as 

u = g on Γg, n · ζζ = h on Γh, (4) 

respectively, where Γg and Γh are complementary subsets of the boundary Γ, n is its unit normal vector and h is the surface traction vector. The initial 

condition on the velocity is specified on Ω at t = 0:  

u(x,0) = u0 on Ω0, (5) 

where u0 is divergence-free, i.e. u0 satisfies Equation (2). The momentum equation for steady incompressible flow is obtained by dropping the time-

derivative in Equation (1).  

3 The finite-element formulation  

The spatial domain Ω is discretized into non-overlapping sub-domain Ω
e
=1,2,.....,nel where nel is the 

number of elements. Suu 
hand S

p 
hbe the finite dimensional trial function spaces for velocity and 

pressure, respectively
and the corresponding weighting function spaces are denoted by ruu 

hand r
p 

h. 

these function spaces are defined as: 

Suu 
h
= 1u

h
|u

h ∈ [H
1h

(Ω)]
2
,u

h 
= 

.
g

h 
on Γgl, (6) 
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ruu 
h
= 1w

h
|w

h ∈ [H
1h

(Ω)]
2
,w

h 
= 

.
0 on Γgl, (7) 

Sp 
h= r

p 
h= 1qh

|q
h ∈ H

1h
(Ω)l, (8) 

where H
1h 

= 1θ
h
|θ

h ∈ C
0
(Ω),θ

h ∈ P 
1
VΩ

e
l. (9) 

Here, P 
1 
represents the first degree polynomials. Thus, over the element domain, this space is formed by using 

first degree polynomials in space and time. Globally, the interpolation functions are continuous in space but 

discontinuous in time. The stabilized space-time formulation for deforming domains is then written as follows:  

given (u
h
)n−, ∫find u

h ∈ (Suu
h)

n and p
h ∈ (Sp

h)
n such that Vw

h ∈ (ruu
h)

n, q
h ∈ (rp 

h)
n, Ω w

h 
· ρ (∂uh ∂t 

+ uh 
· VVu

h 
- 

f
)
dΩ + ∫Ωεε(w

h
) : ζζ(p

h
,u

h
)dΩ + ∫Ω q

h
VV · u

h
dΩ + ∑nel∫[ρe=1Ω[e (∂wh ∂t 

) ]+ uh 
· VVw

h
- VV · ζζ(q

h
,w

h
). ρ 1ρη (∂uh ∂t 

+ uh 
· VVu

h 
- f

) ]
- VV · ζζ(p

h
,u

h
)dΩ

e 
+ ∫Ωe 

δVV · wh
ρVV · u

h
dΩ

e 
 

= 
∫
(ηn)h w

h 
· h

h
dη 

 

In the variational formulation as given above, the first three terms and the right hand side constitute the  

Galerkin formulation of the problem. The first series of element level integrals in Equation (10) are the SUPG  

(streamline-upwind/Petrov-Galerkin) and the PSPG (pressure-stabilizing/Petrov-Galerkin) stabilization terms  

added to the variational formulations of the momentum and the continuity equations, respectively. At high Re,  

in an advection dominated flow, the Galerkin formulation of the flow equations lead to node-to-node 

oscillations in the velocity field. This numerical instability is overcome by adding the SUPG stabilization 

contribution to all the terms of the Galerkin weak form of the momentum equations. The SUPG formulation 

for convection 4  

4 Problem description  

4.1 Problem set-up  

An inclined square cylinder of Diameter D is placed mid-way between two lateral walls of a channel which  

are at a distance of H apart, as shown in Figure 4.1.The flow is described in a Cartesian coordinating system (x  

and y) in which the x-axis is in the direction of inlet flow direction (i.e. in stream wise direction), while y-axis  

is normal to the x-axis (cross-stream direction).The origin is centered at the mid point of the upstream face  

of the cylinder.The flow characteristics are such that the fluid enters the channel with a linear profile and the  

lateral walls are assigned with no-slip condition on velocity, i.e. the velocity is set to zero at upper and lower  

5 boundaries. Neumann condition for velocity is applied on downstream boundary that corresponds to stress-

free condition.  
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      4.2 The finite-element mesh  

A finite-element mesh used for computing the flow past an inclined square cylinder is shown in Figure 4.2.  

The distances of the upstream and downstream boundaries from the origin of the cylinder are denoted by Luand 

Ld, respectively. In the present work, Lu = 60D and Ld = 150D. The mesh is structured, non-uniform and consists of 90418 nodes and 89700 

elements. Figure 2: Finite-element mesh for simulating flow past an inclined square cylinder at 5% blockage 

with 90418 nodes and 89700 elements.  
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5 .Results  

The present study is done by numerically solving the equations of flow and motion. The results are presented 

for Re=5,10,20,30,40 and Re=100. The computations are done for a two dimensional flow with B = 6 
ζ
yx=0 

ζ
yx =0 ζ v=0 o 0.05. Various post processing tools were used to extract the data from the files generated by 

FORTRAN code.  

5.1 Development of steady separation bubble with Re  

Development of the steady separation bubble is determined by streamline contour plots with Re. streamlines  

are plotted for Re=5,10,20,30,40 . It is observed that no separation bubble is formed for Re 5 . The separation  

bubble between the Reynolds no 5-10.The bubble once formed continuously enlarges with increase in Re.  

 

 

5.2 Variation of drag and lift coefficent with Re  

Variation of drag and lift coefficient is shown in figure with Re. It is observed that drag coefficient of shear  

flow past an inclined square cylinder at a blockage of B = 0.05, in steady flow is high at low Re which further  

decreases with increase in Re "  
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5.3 Surface pressure distribution  

Surface pressure distribution is shown in figure from Re = 5-40 for laminar flow past an inclined square  

cylinder. The pressure coefficient p is computed using no-slip boundary conditions on cylinder surface. It  

has been observed that The symmetric surface pressure plot (expected to be assymetric) illustrates that the  

base pressure becomes locally maximum from locally minimum with increase in Re. This is in contrast with  

those obtained for circular cylinder where the base pressure is always locally maximum. The symmetric 

surface pressure plot (expected to be assymetric) illustrates that the base pressure becomes locally maximum 

from locally minimum with increase in Re. This is in contrast with those obtained for circular cylinder where 

the base pressure is always locally maximum.  
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6. Conclusions  

A stabilized finite element formulation using Streamline Upwind/Petrov Galerkin (SUPG) and Pressure  

stabilized/Petrov Galerkin (PSPG) method with great accuracy is used. A parabolic flow with no-slip boundary  

condition at lateral walls, and shear free condition at downstream are used. It is observed that drag coefficient 

decreases with increse in Re, while lift coefficient increse with increase in Re. steady separation of bubbles 

occurs in the range Re 5-10.surface pressure plot is symmetric for Re range 0-40 for shear parameter 

k=0.01 and k=0.02.The base pressure becomes locally maximum from locally minimum with increase in 

Re.  
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